
OVERVIEW OF STORAGE AND INDEXING

DATA ON EXTERNAL STORAGE

 Disks: Can retrieve random page at fixed cost
 But reading several consecutive pages is much cheaper than

reading them in random order

 Tapes: Can only read pages in sequence
 Cheaper than disks; used for archival storage

 File organization: Method of arranging a file of records
on external storage.
 Record id (rid) is sufficient to physically locate record

 Indexes are data structures that allow us to find the record ids of
records with given values in index search key fields

 Architecture: Buffer manager stages pages from
external storage to main memory buffer pool. File and
index layers make calls to the buffer manager. Page:
typically 4 Kbytes.

ALTERNATIVE FILE ORGANIZATIONS

Many alternatives exist, each ideal for some situations,

and not so good in others:

 Heap (random order) files: Suitable when typical access is

a file scan retrieving all records.

 Sorted Files: Best if records must be retrieved in some

order, or only a `range’ of records is needed.

 Indexes: Data structures to organize records via trees or

hashing.

Like sorted files, they speed up searches for a subset of records,

based on values in certain (“search key”) fields

Updates are much faster than in sorted files.

INDEXES

 An index on a file speeds up selections on the

search key fields for the index.

 Any subset of the fields of a relation can be the search

key for an index on the relation.

 Search key is not the same as key (minimal set of fields

that uniquely identify a record in a relation).

 An index contains a collection of data entries, and

supports efficient retrieval of all data entries k* with

a given key value k.

INDEX CLASSIFICATION

 Primary vs. secondary: If search key contains primary

key, then called primary index.

 Unique index: Search key contains a candidate key.

 Clustered vs. unclustered: If order of data records is the

same as order of data entries, then called clustered

index.

 A file can be clustered on at most one search key.

 Cost of retrieving data records through index varies greatly

based on whether index is clustered or not!

INDEX CLASSIFICATION

 Dense vs Sparse: If there is an entry in the index for

each key value -> dense index (unclustered indices are

dense). If there is an entry for each page -> sparse

index.

1

5

..

..

1 Brown ..
2 Smith..
3 White ..
4 Yu ..

6 Peterson..
7 Rhodes..

5 Chen ..

………..

Brown

Chen

Peterson

Rhodes

Smith

Yu

White

CLUSTERED VS. UNCLUSTERED INDEX

 To build clustered index, first sort the Heap file (with some free

space on each page for future inserts).

 Overflow pages may be needed for inserts. (Thus, order of data recs

is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

EXAMPLE B+ TREE

 Good for range queries.

 Insert/delete: Find data entry in leaf, then change it.
Need to adjust parent sometimes. All leaves at he
same height.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

13 5

7* 5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

HASH-BASED INDEXES

 Good for equality selections.

Index is a collection of buckets. Bucket = primary

page plus zero or more overflow pages.

Hashing function h: h(r) = bucket in which record

r belongs. h looks at the search key fields of r.

 Buckets may contain the data records or just the rids.

 Hash-based indexes are best for equality selections.

Cannot support range searches

STATIC HASHING

 # primary pages fixed, allocated sequentially, never de-allocated;

overflow pages if needed.

 h(k) mod N = bucket to which data entry with key k belongs. (N = #

of buckets)

 Long overflow chains can develop and degrade performance.

 Extendible and Linear Hashing: Dynamic techniques to fix this.

h(key) mod N

h
key

Primary bucket pages Overflow pages

2

0

N-1

STATIC HASHING (CONTD.)

 Buckets contain data entries.

 Hash fn works on search key field of record r. Must

distribute values over range 0 ... M-1.

 h(key) = (a * key + b) usually works well.

 a and b are constants; lots known about how to tune h.

COST MODEL FOR OUR ANALYSIS

We ignore CPU costs, for simplicity:

 B: The number of data pages

 R: Number of records per page

 D: (Average) time to read or write disk page

 Measuring number of page I/O’s ignores gains of pre-

fetching a sequence of pages; thus, even I/O cost is only

approximated.

 Average-case analysis; based on several simplistic

assumptions.

 Good enough to show the overall trends!

COMPARING FILE ORGANIZATIONS

 Heap files (random order; insert at eof)

 Sorted files, sorted on <age, sal>

 Clustered B+ tree file, Alternative (1), search key

<age, sal>

 Heap file with unclustered B + tree index on

search key <age, sal>

 Heap file with unclustered hash index on search

key <age, sal>

OPERATIONS TO COMPARE

 Scan: Fetch all records from disk

 Equality search

 Range selection

 Insert a record

 Delete a record

COST OF OPERATIONS
(a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search

+D
(2) Sorted BD Dlog 2B Dlog 2 B +

matches

Search

+ BD

Search

+BD
(3) Clustered 1.5BD Dlog F 1.5B Dlog 2 1.5B

+ # matches

Search

+ D

Search

+D
(4) Unclustered

Tree index

BD(R+0.15) D(1 +log F

0.15B)

Dlog F

0.15B

+ # matches

D(3 +log F

0.15B)

Search

+ 2D

(5) Unclustered

Hash index
BD(R+0.1

25)

2D BD 4D Search

+ 2D

 Several

assumptions underlie
these (rough)
estimates!

B: The number of data pages
R: Number of records per page

D: (Average) time to read or write disk page

CHOICE OF INDEXES
 What indexes should we create?

 One approach: Consider the most important queries in turn.

Consider the best plan using the current indexes, and see if a

better plan is possible with an additional index. If so, create it.

 Obviously, this implies that we must understand how a DBMS

evaluates queries and creates query evaluation plans!

 For now, we discuss simple 1-table queries.

 Before creating an index, must also consider the impact on

updates in the workload!

 Trade-off: Indexes can make queries go faster, updates slower.

Require disk space, too.

INDEX SELECTION GUIDELINES

 Attributes in WHERE clause are candidates for index keys.
 Exact match condition suggests hash index.

 Range query suggests tree index.

 Clustering is especially useful for range queries; can also help on equality
queries if there are many duplicates.

 Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

 Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it based on important queries that would benefit the
most from clustering.

EXAMPLES OF CLUSTERED INDEXES

 B+ tree index on E.age can be used to

get qualifying tuples.

 How selective is the condition?

 Is the index clustered?

 Consider the GROUP BY query.

 If many tuples have E.age > 10, using

E.age index and sorting the retrieved

tuples may be costly.

 Clustered E.dno index may be better!

 Equality queries and duplicates:

 Clustering on E.hobby helps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

INDEXES WITH COMPOSITE SEARCH KEYS

 Composite Search Keys:

Search on a combination of

fields.

 Equality query: Every field value

is equal to a constant value. E.g.

wrt <sal,age> index:

 age=20 and sal =75

 Range query: Some field value

is not a constant. E.g.:

 age =20; or age=20 and sal > 10

 Data entries in index sorted

by search key to support

range queries.

 Order or attributes is relevant.

sue 13 75

bob

cal

joe 12

10

20

80 11

12

name age sal

<sal, age>

<age, sal> <age>

<sal>

12,20

12,10

11,80

13,75

20,12

10,12

75,13

80,11

11

12

12

13

10

20

75

80

Data records
sorted by name

Data entries in index
sorted by <sal,age>

Data entries
sorted by <sal>

Examples of composite key

COMPOSITE SEARCH KEYS

 To retrieve Emp records with age=30 AND sal=4000, an index

on <age,sal> would be better than an index on age or an

index on sal.

 Choice of index key orthogonal to clustering etc.

 If condition is: 20<age<30 AND 3000<sal<5000:

 Clustered tree index on <age,sal> or <sal,age> is best.

 If condition is: age=30 AND 3000<sal<5000:

 Clustered <age,sal> index much better than <sal,age> index!

 Composite indexes are larger, updated more often.

SUMMARY (CONTD.)

 Data entries can be actual data records, <key, rid>

pairs, or <key, rid-list> pairs.

 Choice orthogonal to indexing technique used to locate

data entries with a given key value.

 Can have several indexes on a given file of data

records, each with a different search key.

 Indexes can be classified as clustered vs.

unclustered, primary vs. secondary, and dense vs.

sparse. Differences have important consequences for

utility/performance.

SUMMARY (CONTD.)

 Understanding the nature of the workload for the application,
and the performance goals, is essential to developing a good
design.

 What are the important queries and updates? What
attributes/relations are involved?

 Indexes must be chosen to speed up important queries (and
perhaps some updates!).

 Index maintenance overhead on updates to key fields.

 Choose indexes that can help many queries, if possible.

 Build indexes to support index-only strategies.

 Clustering is an important decision; only one index on a given
relation can be clustered!

 Order of fields in composite index key can be important.

